資料視覺化(Data Visualization) - Python 套件 - 互動式繪圖 - 各種類型圖的繪製 - Plotly筆記(三)
IPFS
Github連結
1. 折線圖 & 散點圖
- 上一篇中我們有實作過這部分,兩種類型圖都可以使用plotly.graph_objs.Scatter()函式來實現,實作方式的差別在於mode,是傳入markers、lines、text、兩倆配對或三個組合使用
- 接下來我們使用的數據集來自於Plotly放在github上的各種數據集,非常適合大家拿來練習使用 - https://gihub.com/plotly/datasets
- 舉例: 這邊使用股市資料來demo,我將IBM以折線的方式,SBUX以折線加散點的方式,AAPL用散點的方式來呈現,也透過這張圖帶大家感受一下這三種搭配組合的差別
STEP 1: 導入數據集與Plotly所需的套件
## 導入套件 import plotly import plotly.offline as pof import plotly.graph_objs as go import pandas as pd ## 設定為離線 pof.init_notebook_mode(connected = True) ## 導入數據集 stock_df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/stockdata.csv") ## 取數據集中的前40筆 stock_df = stock_df.head(40) ## 顯示數據 stock_df
執行結果
STEP 2: 繪圖
## 數據集 折線圖 data1 = go.Scatter( x = stock_df['Date'], y = stock_df['IBM'], mode = "lines", name = 'IBM' ) ## 數據集 折線+點圖 data2 = go.Scatter( x = stock_df['Date'], y = stock_df['SBUX'], mode = "lines+markers", name = 'SBUX' ) ## 數據集 點圖 data3 = go.Scatter( x = stock_df['Date'], y = stock_df['AAPL'], mode = "markers", name = 'AAPL' ) ## 數據集 折線+點+文字圖 data4 = go.Scatter( x = stock_df['Date'], y = stock_df['MSFT'], mode = "lines+markers+text", name = 'MSFT' ) ## 介面 layout = go.Layout( title = 'Stock', xaxis = {'title': 'Date'}, yaxis = {'title': 'Price'}, showlegend = True, plot_bgcolor = "#B9B9FF", paper_bgcolor = "#ACD6FF", font = { 'size': 28, 'family': 'fantasy', 'color': '#D9006C' }, ) ## 組合成Figure figure = go.Figure(data = [data1, data2, data3, data4], layout = layout) ## 繪圖 pof.iplot(figure, filename = 'Plotly-Scatter', show_link = True, link_text = "Plotly Links", image_height = 800, image_width = 900)
執行結果
補充: 如果想要自動保存圖片,只要在iplo()裡面加上image參數,可以有的的選項: 'png', 'jpeg', 'svg', 'webp',就會自動保存成圖擋喔
2. 柱狀圖 plotly.graph_objs.Bar()
- 柱狀圖的話,我們使用的是plotly.graph_objs.Bar()來實現,其參數與Scatter幾乎一樣,但沒有mode參數
- 舉例: 一樣拿股市數據集進行繪圖,但這次我想要把資料縮減,我們只要2007年2月份的數據集,而且只想針對IBM和MSFT就好,但我在下面的程式碼中會將四間公司都放上喔,只是會註解掉其他兩間,如果想要四間都呈現,大家可以自行將註解打開,並在Figure()中data參數添加這兩筆數據即可
## 導入套件 import plotly import plotly.offline as pof import plotly.graph_objs as go import pandas as pd ## 設定為離線 pof.init_notebook_mode(connected = True) ## 導入數據集 stock_df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/stockdata.csv") ## 取數據集中的前40筆 stock_df = stock_df.head(40) ## 將數據設定在2007年二月份 stock_df = stock_df[(stock_df['Date'] < '2007-03-01') & (stock_df['Date'] > '2007-01-31')] ## 數據1 data1 = go.Bar( x = stock_df['Date'], y = stock_df['IBM'], name = 'IBM' ) ### 數據2 # data2 = go.Bar( # x = stock_df['Date'], # y = stock_df['SBUX'], # name = 'SBUX' # ) # ## 數據3 # data3 = go.Bar( # x = stock_df['Date'], # y = stock_df['AAPL'], # name = 'AAPL' # ) ## 數據4 data4 = go.Bar( x = stock_df['Date'], y = stock_df['MSFT'], name = 'MSFT' ) ## 介面 layout = go.Layout( title = 'Stock', xaxis = {'title': 'Date'}, yaxis = {'title': 'Price'}, showlegend = True, plot_bgcolor = "#B9B9FF", paper_bgcolor = "#ACD6FF", font = { 'size': 28, 'family': 'fantasy', 'color': '#D9006C' }, ) ## 組合成Figure figure = go.Figure(data = [data1, data4], layout = layout) ## 繪圖 pof.iplot(figure, filename = 'Plotly-Scatter', show_link = True, link_text = "Plotly Links", image_height = 800, image_width = 900)
執行結果
4. 直方圖 plotly.graph_objs.Histogram()
- 直方圖所使用的是plotly.graph_objs.Histogram(),它有一個特點,就是只傳入一維數據,也就是只需要傳入一組數據,它是統計這個一維數據中,不同區間的值出現的次數,它有特別的參數xbins,指的是統計區間值,以xbins = {'size': 1}為例,就是區間的距離為1,以下面的例子來說77~77.9, 78~78.9,77.9~77的相差值就是我們設定的xbins
- 調整Layout的參數bargap: 傳入值介於0~1之間,代表直方圖之間的距離差
- 舉例1: 我們一樣拿股市數據集中的IBM來傳入看看,發現它會統計77~77.9, 78~78.9等的區間次數
## 導入套件 import plotly import plotly.offline as pof import plotly.graph_objs as go import pandas as pd ## 設定為離線 pof.init_notebook_mode(connected = True) ## 導入數據集 stock_df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/stockdata.csv") ## 取數據集中的前40筆 stock_df = stock_df.head(40) ## 將數據設定在2007年二月份 stock_df = stock_df[(stock_df['Date'] < '2007-03-01') & (stock_df['Date'] > '2007-01-31')] ## 數據1 data1 = go.Histogram( x = stock_df['IBM'], name = 'IBM' ) ## 介面 layout = go.Layout( title = 'Stock', xaxis = {'title': 'Date'}, yaxis = {'title': 'Price'}, showlegend = True, plot_bgcolor = "#B9B9FF", paper_bgcolor = "#ACD6FF", font = { 'size': 28, 'family': 'fantasy', 'color': '#D9006C' }, bargap = 0.1 ) ## 組合成Figure figure = go.Figure(data = [data1], layout = layout) ## 繪圖 pof.iplot(figure, filename = 'Plotly-Scatter', show_link = True, link_text = "Plotly Links", image_height = 800, image_width = 900)
執行結果
- 舉例2: 帶入參數xbins = {'size': 2}
## 導入套件 import plotly import plotly.offline as pof import plotly.graph_objs as go import pandas as pd ## 設定為離線 pof.init_notebook_mode(connected = True) ## 導入數據集 stock_df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/stockdata.csv") ## 取數據集中的前40筆 stock_df = stock_df.head(40) ## 將數據設定在2007年二月份 stock_df = stock_df[(stock_df['Date'] < '2007-03-01') & (stock_df['Date'] > '2007-01-31')] ## 數據1 data1 = go.Histogram( x = stock_df['IBM'], xbins = {'size': 2}, name = 'IBM' ) ## 介面 layout = go.Layout( title = 'Stock', xaxis = {'title': 'Date'}, yaxis = {'title': 'Price'}, showlegend = True, plot_bgcolor = "#B9B9FF", paper_bgcolor = "#ACD6FF", font = { 'size': 28, 'family': 'fantasy', 'color': '#D9006C' }, bargap = 0.1 ) ## 組合成Figure figure = go.Figure(data = [data1], layout = layout) ## 繪圖 pof.iplot(figure, filename = 'Plotly-Scatter', show_link = True, link_text = "Plotly Links", image_height = 800, image_width = 900)
執行結果
5. 堆疊圖
- 一樣使用plotly.graph_objs.Bar(),但要於layout中添加一個參數barmode = 'stack',就可以繪製成堆疊圖囉
## 導入套件 import plotly import plotly.offline as pof import plotly.graph_objs as go import pandas as pd ## 設定為離線 pof.init_notebook_mode(connected = True) ## 數據1 data1 = go.Bar( x = ['cap', 't-shirt', 'pants'], y = ['200', '100', '500'], name = 'A-Mart' ) ## 數據2 data2 = go.Bar( x = ['cap', 't-shirt', 'pants'], y = ['200', '100', '500'], name = 'B-Mart' ) ## 數據3 data3 = go.Bar( x = ['cap', 't-shirt', 'pants'], y = ['200', '400', '600'], name = 'C-Mart' ) ## 數據4 data4 = go.Bar( x = ['cap', 't-shirt', 'pants'], y = ['200', '400', '600'], name = 'D-Mart' ) ## 介面 layout = go.Layout( title = 'Stock', xaxis = {'title': 'Date'}, yaxis = {'title': 'Price'}, showlegend = True, plot_bgcolor = "#B9B9FF", paper_bgcolor = "#ACD6FF", font = { 'size': 28, 'family': 'fantasy', 'color': '#D9006C' }, barmode = 'stack' ) ## 組合成Figure figure = go.Figure(data = [data1, data2, data3, data4], layout = layout) ## 繪圖 pof.iplot(figure, filename = 'Plotly-Scatter', show_link = True, link_text = "Plotly Links", image_height = 800, image_width = 900)
執行結果
6. 圓餅圖 Pie plotly.graph_objs.Pie()
- 使用plotly.graph_objs.Pie()來繪製圓餅圖
- plotly.graph_objs.Pie 參數
- labels: 傳入類別的標籤名稱,以串列(list)的形式傳入
- values: 標籤類別名稱對應的數值,也是以串列的形式傳入
- hoverinfo: 當鼠標移上去出現的訊息,可以傳入'label+percent',就會顯示標籤名稱和百分比資訊
- textinfo: 圓餅圖上的文字,傳入'value'就會顯示對應圖形區域的標籤值
## 導入套件 import plotly import plotly.offline as pof import plotly.graph_objs as go import pandas as pd ## 設定為離線 pof.init_notebook_mode(connected = True) ## 構建數據集 group_student = ['Technology', 'Design', 'Management', 'Medicine'] student_amount = [100, 80, 60, 60] colors = ['blue', 'red', 'purple', 'grey'] ## 數據1 data1 = go.Pie( labels = group_student, values = student_amount, hoverinfo = 'label+percent', textinfo = 'value', textfont = {'size': 10}, marker = { 'colors': colors, 'line': {'color': 'black', 'width': 4} } ) ## 介面 layout = go.Layout( title = 'Stock', xaxis = {'title': 'Date'}, yaxis = {'title': 'Price'}, showlegend = True, plot_bgcolor = "#B9B9FF", paper_bgcolor = "#ACD6FF", font = { 'size': 28, 'family': 'fantasy', 'color': '#D9006C' }, ) ## 組合成Figure figure = go.Figure(data = [data1], layout = layout) ## 繪圖 pof.iplot(figure, filename = 'Plotly-Scatter', show_link = True, link_text = "Plotly Links", image_height = 800, image_width = 900)
執行結果
當然除了這些還有更多類型的圖,大家有興趣可以直接參考官網https://plotl.com/python/教學喔,也可以跟著我在之後的文章中一起繼續學習
大家是否已經迫不及待想拿手邊的數據試試了,Plotly繪出來的圖真的好美~~ 希望這篇有幫助到您!!
Reference
https://www.youtube.com/watch?v=ifYugIP0pPQ
https://plotl.com/python/https://www.cnblogs.com/feffery/p/9293745.html
https://blogs.csdn.net/u012897374/article/details/77857980
https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf
喜欢我的作品吗?别忘了给予支持与赞赏,让我知道在创作的路上有你陪伴,一起延续这份热忱!
- 来自作者
- 相关推荐